Modules
DistributionModule
Bases: Module
Base class for constructing learnable distributions.
This subclass of torch.nn.Module
acts like a torch.distributions.Distribution
object with learnable torch.nn.Parameter
attributes.
It works by lazily constructing distributions as needed.
Here is a simple example of distribution matching using learnable distributions with reparameterized gradients.
from rs_distributions import modules as rsm
import torch
q = rsm.FoldedNormal(10., 5.)
p = torch.distributions.HalfNormal(1.)
opt = torch.optim.Adam(q.parameters())
steps = 10_000
num_samples = 256
for i in range(steps):
opt.zero_grad()
z = q.rsample((num_samples,))
kl = (q.log_prob(z) - p.log_prob(z)).mean()
kl.backward()
opt.step()
Source code in src/rs_distributions/modules/distribution.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
|
TransformedParameter
Bases: Module
A torch.nn.Module
subclass representing a constrained variabled.
Source code in src/rs_distributions/modules/transformed_parameter.py
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
__init__(value, transform)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
value |
Tensor The initial value of this learnable parameter |
required | |
transform |
torch.distributions.Transform A transform instance which is applied to the underlying, unconstrained value |
required |
Source code in src/rs_distributions/modules/transformed_parameter.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|