Quickstart¶
Load reflection data and preview the rs.DataSet object.
[1]:
import reciprocalspaceship as rs
[2]:
dataset = rs.read_mtz("data/HEWL_SSAD_24IDC.mtz")
dataset.head()
[2]:
| FreeR_flag | IMEAN | SIGIMEAN | I(+) | SIGI(+) | I(-) | SIGI(-) | N(+) | N(-) | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| H | K | L | |||||||||
| 0 | 0 | 4 | 14 | 671.0396 | 22.205784 | 671.0396 | 22.205784 | 671.0396 | 22.205784 | 16 | 16 |
| 8 | 4 | 3273.7385 | 107.59589 | 3273.7385 | 107.59589 | 3273.7385 | 107.59589 | 16 | 16 | ||
| 12 | 6 | 1367.5679 | 43.352566 | 1367.5679 | 43.352566 | 1367.5679 | 43.352566 | 16 | 16 | ||
| 16 | 19 | 4158.55 | 198.88382 | 4158.55 | 198.88382 | 4158.55 | 198.88382 | 8 | 8 | ||
| 20 | 8 | 2.4992087 | 5.7103205 | 2.4992087 | 5.7103205 | 2.4992087 | 5.7103205 | 1 | 1 |
The above table should look familiar to Python users that have experience with pandas. Thers.DataSet objects also store unit cell and spacegroup information as attributes. These attributes are stored as gemmi objects. For more information on the gemmi Python library, please see their documentation.
[3]:
print(dataset.cell)
<gemmi.UnitCell(79.3435, 79.3435, 37.8098, 90, 90, 90)>
[4]:
print(dataset.spacegroup)
<gemmi.SpaceGroup("P 43 21 2")>
To illustrate using the unit cell parameter information, let’s compute the highest resolution reflection in the dataset:
[5]:
dataset.compute_dHKL(inplace=True)
dataset.head()
[5]:
| FreeR_flag | IMEAN | SIGIMEAN | I(+) | SIGI(+) | I(-) | SIGI(-) | N(+) | N(-) | dHKL | |||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H | K | L | ||||||||||
| 0 | 0 | 4 | 14 | 671.0396 | 22.205784 | 671.0396 | 22.205784 | 671.0396 | 22.205784 | 16 | 16 | 9.45245 |
| 8 | 4 | 3273.7385 | 107.59589 | 3273.7385 | 107.59589 | 3273.7385 | 107.59589 | 16 | 16 | 4.726225 | ||
| 12 | 6 | 1367.5679 | 43.352566 | 1367.5679 | 43.352566 | 1367.5679 | 43.352566 | 16 | 16 | 3.1508167 | ||
| 16 | 19 | 4158.55 | 198.88382 | 4158.55 | 198.88382 | 4158.55 | 198.88382 | 8 | 8 | 2.3631124 | ||
| 20 | 8 | 2.4992087 | 5.7103205 | 2.4992087 | 5.7103205 | 2.4992087 | 5.7103205 | 1 | 1 | 1.8904899 |
[6]:
print(f"{dataset.dHKL.min():.2f} angstroms")
1.71 angstroms