This page was generated from
docs/examples/0_quickstart.ipynb.
Interactive online version:
.
Quickstart
Load reflection data and preview the rs.DataSet
object.
[1]:
import reciprocalspaceship as rs
print(rs.__version__)
0.9.9
[2]:
dataset = rs.read_mtz("data/HEWL_SSAD_24IDC.mtz")
dataset.head()
[2]:
FreeR_flag | IMEAN | SIGIMEAN | I(+) | SIGI(+) | I(-) | SIGI(-) | N(+) | N(-) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
H | K | L | |||||||||
0 | 0 | 4 | 14 | 661.29987 | 21.953098 | 661.29987 | 21.953098 | 661.29987 | 21.953098 | 16 | 16 |
8 | 4 | 3229.649 | 105.980934 | 3229.649 | 105.980934 | 3229.649 | 105.980934 | 16 | 16 | ||
12 | 6 | 1361.8672 | 43.06085 | 1361.8672 | 43.06085 | 1361.8672 | 43.06085 | 16 | 16 | ||
16 | 19 | 4124.393 | 196.89108 | 4124.393 | 196.89108 | 4124.393 | 196.89108 | 8 | 8 | ||
1 | 0 | 1 | 16 | 559.33685 | 8.6263 | 559.33685 | 8.6263 | 559.33685 | 8.6263 | 64 | 64 |
The above table should look familiar to Python users that have experience with pandas
. Thers.DataSet
objects also store unit cell and spacegroup information as attributes. These attributes are stored as gemmi
objects. For more information on the gemmi
Python library, please see their documentation.
[3]:
print(dataset.cell)
<gemmi.UnitCell(79.3439, 79.3439, 37.8099, 90, 90, 90)>
[4]:
print(dataset.spacegroup)
<gemmi.SpaceGroup("P 43 21 2")>
To illustrate using the unit cell parameter information, let’s determine the highest resolution reflection in the dataset:
[5]:
dataset.compute_dHKL(inplace=True)
dataset.head()
[5]:
FreeR_flag | IMEAN | SIGIMEAN | I(+) | SIGI(+) | I(-) | SIGI(-) | N(+) | N(-) | dHKL | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H | K | L | ||||||||||
0 | 0 | 4 | 14 | 661.29987 | 21.953098 | 661.29987 | 21.953098 | 661.29987 | 21.953098 | 16 | 16 | 9.452475 |
8 | 4 | 3229.649 | 105.980934 | 3229.649 | 105.980934 | 3229.649 | 105.980934 | 16 | 16 | 4.7262373 | ||
12 | 6 | 1361.8672 | 43.06085 | 1361.8672 | 43.06085 | 1361.8672 | 43.06085 | 16 | 16 | 3.150825 | ||
16 | 19 | 4124.393 | 196.89108 | 4124.393 | 196.89108 | 4124.393 | 196.89108 | 8 | 8 | 2.3631186 | ||
1 | 0 | 1 | 16 | 559.33685 | 8.6263 | 559.33685 | 8.6263 | 559.33685 | 8.6263 | 64 | 64 | 34.13254 |
[6]:
print(f"{dataset.dHKL.min():.2f} angstroms")
1.70 angstroms